{{ 'ml-label-loading-course' | message }}
{{ toc.name }}
{{ toc.signature }}
{{ tocHeader }} {{ 'ml-btn-view-details' | message }}
{{ tocSubheader }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
Lektion
Övningar
Rekommenderade
Tester
Ett fel uppstod, försök igen senare!
Kapitel {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
Visa mindre Visa mer expand_more
{{ ability.description }} {{ ability.displayTitle }}
Inställningar & verktyg för lektion
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }}
{{ 'ml-lesson-time-estimation' | message }}
Cosinusekvationer är trigonometriska ekvationer där man börjar med ett cosinusvärde och ska hitta motsvarande vinkel. Det finns dock oändligt många vinklar med samma cosinusvärde, och därför har cosinusekvationer ofta oändligt många lösningar. Genom att utnyttja periodiciteten för cosinus kan man bestämma alla dessa.
Regel

Period för cosinus

För att hitta samtliga rötter till en cosinusekvation behöver man förstå hur cosinusvärdet för en vinkel påverkas när den blir mindre än eller större än
Regel

Vinklar utanför intervallet

Vilka värden kan en vinkel ha? Rent geometriskt beskrivs en vinkel med hjälp av linjer vilket betyder att de oftast anges mellan och I enhetscirkeln hanteras även negativa vinklar, där tecknet avgör vinkelns "riktning" — positiva vinklar dras moturs i enhetscirkeln medan negativa vinklar dras medurs.

Men om den nedre gränsen kan passeras, hur är det då med den övre? Kan en vinkel vara större än Den som är bekant med t.ex. snowboard vet svaret: Det går fint, eftersom beskriver ett varvs rotation i det sammanhanget. Och det går att rotera mer än ett varv, även om det kan vara svårt.

SnowboardareNoText.svg
I bilden har den ena åkaren roterat ett varv, medan den andra har roterat två varv,
Regel

Perioden

Snowboardåkarnas tolkning av dessa vinklar kan överföras till enhetscirkeln. Varje vinkel motsvarar en punkt i enhetscirkeln, där -koordinaten för punkten är vinkelns cosinusvärde. Genom att snurra ett varv till hamnar man på samma punkt, men vinkeln är större.
Cosinusekvationer.svg

Eftersom det är samma punkt är cosinusvärdet också samma. Det betyder att man kan lägga till eller dra bort från en vinkel utan att cosinusvärdet förändras. Man säger att cosinus har perioden eller om man använder radianer. I enhetscirkeln nedan är punkten som motsvarar markerad. Genom att lägga till eller dra ifrån hittar man fler vinklar för samma punkt och som därmed har samma cosinusvärde.

Återställ

Det finns ingen övre eller undre gräns för storleken på vinkeln, så det finns oändligt många med samma cosinusvärde.
Metod

Lösa cosinusekvationer

I en cosinusekvation av typen
är man ute efter alla vinklar som har cosinusvärdet

Förutom de två vinklarna som visas i enhetscirkeln finns oändligt många fler eftersom cosinusfunktionen är periodisk. För att hitta alla lösningar ingår tre moment, men när man själv löser ekvationen bör alla tre göras i samma beräkningssteg.

1
Hitta en lösning med arccos
expand_more
Med funktionen arcuscosinus bestämmer man en vinkel som har cosinusvärdet
2
Lägg till spegellösningen med
expand_more
Arcuscosinus ger alltid en positiv vinkel, men som bilden visar bör det även finnas en negativ lösning. Den får man genom att spegla vinkeln i -axeln. För att ange båda lösningarna samtidigt används tecknet
3
Lägg till perioder
expand_more
Nu har man hittat de två lösningar som syns i enhetscirkeln. Men cosinus har perioden (eller ) så genom att lägga till ett varv hittar man ytterligare två:
På samma sätt kan man lägga till eller dra bort ett godtyckligt antal hela varv för att hitta fler lösningar. Ekvationens samtliga lösningar kan därför skrivas
där är ett heltal.
Ibland används begreppet lösningsmängd när man samlar ihop alla, eller en delmängd av, en ekvations lösningar. Det är särskilt användbart för trigonometriska ekvationer där man ofta vill beskriva oändligt många lösningar. I det här fallet är en lösningsmängd och en annan.

Exempel

Lös cosinusekvationen fullständigt

fullscreen

Lös ekvationen Svara i grader.

Visa Lösning expand_more
Vi använder arcuscosinus för att lösa ekvationen. Glöm inte att lägga till spegellösningen samt perioden
Nu har vi blivit av med cosinusuttrycket, men det står ju i vänsterledet. Vi dividerar därför med på båda sidor. Tänk på att både och delas med
Det finns alltså oändligt många lösningar till ekvationen och de kan alla beskrivas med formeln
där är ett heltal. Det är en sammanslagning av lösningsmängderna
Nu är vi egentligen klara, men för att visa några vinklar som löser ekvationen kan vi genom sätta in olika värden på


Laddar innehåll