{{ 'ml-label-loading-course' | message }}
{{ toc.name }}
{{ toc.signature }}
{{ tocHeader }} {{ 'ml-btn-view-details' | message }}
{{ tocSubheader }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
Lektion
Övningar
Rekommenderade
Tester
Ett fel uppstod, försök igen senare!
Kapitel {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
Visa mindre Visa mer expand_more
{{ ability.description }} {{ ability.displayTitle }}
Inställningar & verktyg för lektion
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }}
{{ 'ml-lesson-time-estimation' | message }}
En vanlig tillämpning av derivata är att hitta extrempunkter till en funktion, Genom att derivera funktionen och "sätta derivatan lika med ", dvs. genom att ställa upp ekvationen
kan man algebraiskt ta reda på de stationära punkterna. Det är i många fall extrempunkterna man är intresserad av eftersom det är där man kan hitta maximala och minimala värden för funktionen t.ex. en maximal vinst eller en minimal kostnad.
Metod

Bestämma extrempunkter med derivata och teckentabell

Man kan bestämma lokala extrempunkter för en funktion, t.ex. genom att avgöra i vilka punkter dess derivata är och därefter undersöka extrempunkternas karaktär samt dess koordinater.

1
Derivera funktionen
expand_more

Man börjar med att derivera funktionen med lämpliga deriveringsregler.

2
Bestäm derivatans nollställen
expand_more
För att hitta derivatans nollställen sätter man den lika med och löser den ekvation man får. I detta fall får man
Hur man löser beror på hur ekvationen ser ut. Här använder man nollproduktmetoden.

I det här fallet får man ut en lösning direkt, samt en andragradsekvation som kan lösas med -formeln.

Lösningarna till ekvationen är alltså och en dubbelrot Detta är derivatans nollställen, så för dessa -värden hittar man funktionens stationära punkter.

3
Avgör stationära punkters karaktär med teckentabell
expand_more

För att avgöra vilken typ av stationära punkter man har hittat kan man göra en teckentabell. Man börjar med att fylla i informationen från föregående steg, dvs. att derivatan är när är och

För att bestämma de stationära punkternas karaktär tar man reda på om är växande eller avtagande på intervallen mellan punkterna. Det gör man enklast genom att undersöka derivatans tecken på dessa intervall. Man väljer därför något -värde på respektive intervall och sätter in det i derivatan Här kan man t.ex. välja -värdena och

Nu kan man fylla i derivatans tecken på teckentabellens andra rad. Samtidigt kan man fylla i grafens utseende på tredje raden med hjälp av detta. En positiv derivata ger en växande funktion () och en negativ derivata ger en avtagande funktion ().

I tabellen ser man att funktionen är avtagande till vänster om och växande till höger, vilket innebär att det finns en minimipunkt där. Kring den stationära punkten i är funktionen istället växande på båda sidor, så där finns en terrasspunkt.

Min Ter.
4
Uteslut eventuella terrasspunkter
expand_more

Målet här är att hitta funktionens extrempunkter men eftersom terrasspunkter inte är extrempunkter kan man utesluta dem. Därför utesluts punken där

5
Bestäm extrempunkternas koordinater
expand_more
Till sist bestämmer man koordinaterna för extrempunkterna. Eftersom man känner till deras -värden kan man sätter in dem i funktionen Minimipunkten i exemplet har -värdet vilket ger -värdet
Funktionens enda extrempunkt är alltså en minimipunkt med koordinaterna Man kan kontrollera detta genom att rita funktionen på räknaren.
tredjegradsfunktion med minimipunkt och terrasspunkt


Översiktligt kan arbetsgången för att hitta lokala extrempunkter beskrivas av följande flödesschema.

Flödesschema som visar hur man hittar lokala extrempunkter

Exempel

Hitta funktionens stationära punkter

fullscreen
Bestäm koordinaterna för funktionens stationära punkter.
Visa Lösning expand_more
Funktionen har stationära punkter i de -värden där funktionens derivata är För att hitta derivatans nollställen måste vi först derivera
Vi likställer nu derivatan med , dvs. vi sätter och löser ekvationen.
Funktionen har stationära punkter i och För att bestämma motsvarande -koordinater sätter vi in -värdena i .

De stationära punkternas koordinater är och

Exempel

Gör en teckentabell utifrån funktionen

fullscreen
Gör en teckentabell för funktionen
Visa Lösning expand_more
Vi vill hitta -värdena för de stationära punkterna, så vi börjar med att derivera funktionen.

Derivatan är i de stationära punkterna så vi sätter lika med och löser ekvationen med nollproduktmetoden.

Vi fyller i derivatans nollställen i en teckentabell.

Nu tar vi reda på derivatans tecken mellan dess nollställen. Vi väljer något -värde på varje intervall och sätter in det i derivatan Det spelar ingen roll vilket -värde man väljer, så vi väljer som ger enkla beräkningar.

Tecken

Genom att fylla i derivatans tecken på den andra raden kan vi också avgöra grafens utseende.

Nu kan vi se att den vänstra extrempunkten är ett maximum och den högra är ett minimum.

Max Min
Laddar innehåll