| {{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }} |
| {{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }} |
| {{ 'ml-lesson-time-estimation' | message }} |
Minispelare aktiv
Faktorisera uttrycket 20x2y3 så långt det går.
Uttrycket är en produkt som består av en koefficient och två olika typer av variabler. När vi faktoriserar detta delar vi upp koefficienterna och variablerna i så små faktorer som möjligt.
a3=a⋅a⋅a
a2=a⋅a
Skriv 20 som 4⋅5
Skriv 4 som 2⋅2
Om alla termer i ett uttryck innehåller en gemensam faktor kan denna brytas ut. Detta innebär att faktorn plockas ut ur alla termerna och sätts framför en parentes som innehåller det som finns kvar av termerna. Exempelvis innehåller alla termer i uttrycket x2+2x variabeln x. Bryts den ut får man resultatet x(x+2). Man kan se detta som motsatsen till att multiplicera in något i en parentes.
Bryt ut 2x ur uttrycket 4x3+8x2.
Vi börjar med att bestämma vad som blir kvar av varje term i uttrycket om vi plockar ut 2x ur dem. Det gör vi genom att faktorisera termerna på lämpligt sätt. I första termen finns en 4:a, som kan skrivas 2⋅2, samt x3, som kan skrivas x⋅x2. Vi resonerar på liknande sätt för den andra termen och sammanställer faktoriseringarna i tabellen.
Term | Faktorisera |
---|---|
4x3 | 2x⋅2x2 |
8x2 | 2x⋅4x |
Bryt ut största möjliga faktor ur 4x3+8x2.
Vi faktoriserar termerna i uttrycket och identifierar de faktorer som är gemensamma. Produkten av dessa är den största möjliga faktorn som kan brytas ut.
Term | Faktorisera |
---|---|
4x3 | 2⋅2⋅x⋅x⋅x |
8x2 | 2⋅2⋅2⋅x⋅x |
Båda termer innehåller två 2:or och två x. Den största möjliga faktorn som kan brytas ut är alltså 2⋅2⋅x⋅x eller skrivet som en produkt: 4x2.
Dela upp i faktorer
Omarrangera faktorer
Multiplicera faktorer
Bryt ut 4x2