| {{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }} |
| {{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }} |
| {{ 'ml-lesson-time-estimation' | message }} |
Uttryck | Förenklat | Operation |
---|---|---|
(1+2)⋅32−25+5 | 3⋅32−210 | Utvärdering av parenteser och grupperingssymboler |
3⋅32−210 | 3⋅9−210 | Potenser |
3⋅9−210 | 27−5 | Multiplikation och division |
27−5 | 22 | Subtraktion |
Det finns några saker att notera om denna utvärdering.
Please Excuse My Dear Aunt Sally.
Följ prioriteringsreglerna.
Beräkna kvot
Multiplicera faktorer
Addera och subtrahera termer
Bilden kunde ej laddas
Notera att ett bråkstreck på räknaren skrivs med knappen /. Om man skulle skriva in uttrycket utan parenteser kommer räknaren inte förstå att den först ska räkna ihop summan av täljaren och sedan dividera denna med summan av nämnaren. Istället skulle räknaren enligt prioriteringsreglerna addera 100 till 50/2 och sedan till 8, vilket ger ett annat resultat.
Bilden kunde ej laddas
Detta är även något man måste tänka på när man skriver in potenser på räknaren. Om man t.ex. ska skriva 23⋅2 måste man sätta en parentes runt multiplikationen för att beräkningen ska ske på rätt sätt.
Bilden kunde ej laddas
Skrivs detta utan parentesen beräknas först 23 och resultatet multipliceras sedan med 2.
Bilden kunde ej laddas
OLD:Avrundning innebär att ersätta ett tal med ett ungefärligt värde som är kortare, enklare eller lättare att förstå. Med andra ord innebär avrundning att förenkla ett tal samtidigt som det hålls nära sitt ursprungliga värde. Tänk till exempel på talet π.
NEW: Avrundning innebär att man ersätter ett tal med ett ungefärligt värde som är kortare, enklare eller lättare att förstå. Med andra ord betyder avrundning att man förenklar ett tal samtidigt som man behåller det nära dess ursprungliga värde. Ta till exempel talet π.
NEW: När man räknar med talet π är det vanligt att man avrundar det till 3,14 eller till och med bara 3. Det är för att det blir mycket enklare att använda i uträkningar, även om det inte är helt exakt. Om man däremot vill ha det exakta värdet, så säger man att talet är skrivet i [Begrepp:Exakt form|exakt form]]. Och ja, både heltal och decimaltal kan man avrunda.
Antal | Avrundning | Resultat |
---|---|---|
76 | Till närmaste tio | 80 |
214 | Till närmaste hundratal | 200 |
52941 | Till närmaste tusendelar | 5294 |
27982 | Till närmaste heltal | 28 |
Siffran i ett tal som avrundas kallas avrundningssiffra och det är siffran efter avrundningssiffran, den så kallade beslutssiffran, som bestämmer om talet avrundas uppåt eller nedåt. Om man ska avrunda till en decimal får man följande avrundnings- och beslutssiffror.
I Sverige har man kommit överens om följande avrundningsregler beroende på vilket värde beslutssiffran har.
Är den 0–4 behålls avrundningssiffran
Är den 5–9 ökas avrundningssiffran med 1
För att minimera avrundningsfelet bör man vänta med att avrunda till slutet av beräkningen, om det är möjligt.
Följ avrundningsreglerna.
Gällande siffror (även kallat värdesiffror eller signifikanta siffror) anger hur exakt ett värde är. Alla siffror som inte är 0 är alltid gällande, och 0 är gällande ibland. Inledande nollor i tal räknas inte som gällande, t.ex. är nollorna i talet 0,00031 inte gällande. Det finns ett par förutsättningar där nollor räknas som gällande:
Vi markerar de gällande siffrorna i dessa och ytterligare fyra tal.