| {{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }} |
| {{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }} |
| {{ 'ml-lesson-time-estimation' | message }} |
Om rotuttryck multipliceras eller divideras, t.ex. 2⋅8, finns det räkneregler som kan förenkla beräkningarna. Det finns till exempel inget enkelt sätt att beräkna 2 eller 8 separat men man kan skriva om 2⋅8 som 16, vilket är lika med 4. Generellt gäller följande likheter för multiplikationer och divisioner av rotuttryck.
En produkt av två rotuttryck, t.ex. 42⋅43, kan skrivas som ett enda rotuttryck: 42⋅3. Man kan motivera varför genom att skriva 42⋅43 som en multiplikation av två potenser och sedan använda potenslagarna.
Regeln gäller för icke-negativa och reella a och b. Är rotuttrycken kvadratrötter fungerar regeln på samma sätt. Man skriver då a⋅b, inte 2a⋅b.En kvot av två rotuttryck, t.ex. 4342, kan skrivas som ett enda rotuttryck: 432. Man kan motivera varför genom att skriva om rötterna till potenser, och därefter använda potenslagarna.
Regeln gäller om a och b är reella, där a är icke-negativt och b är positivt. Om rotuttrycken är kvadratrötter fungerar regeln på samma sätt. Dock brukar man då skriva ba och inte 2ba.a⋅b=a⋅b
Multiplicera faktorer
ba=ba
Beräkna kvot
Beräkna rot
Skriv 6 som 2⋅3
a⋅b=a⋅b
Stryk faktorer
Förenkla kvot
a⋅a=a
Om man behöver skriva en potens med ett bråk i exponenten är det viktigt att komma ihåg att sätta parenteser runt bråket.
Om man glömmer detta kommer räknaren att utföra beräkningarna enligt prioriteringsreglerna, vilket innebär att endast siffran direkt höger om ∧ hamnar i exponenten.