| {{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }} |
| {{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }} |
| {{ 'ml-lesson-time-estimation' | message }} |
Regression innebär att man anpassar matematiska funktioner till mätdata. Det används bland annat för att skapa modeller av verkliga förlopp.
Ett spridningsdiagram är ett sätt att visualisera mätdata med två parametrar i ett koordinatsystem. Om man t.ex. mäter höjden på tomatplantor vid olika tidpunkter får man ett antal datapunkter som kan markeras i ett koordinatsystem med tiden som x-koordinat och höjden som y-koordinat. Då har man gjort ett spridningsdiagram.
Varje punkt i diagrammet motsvaras av höjden på en planta efter en viss tid.Linjär regression är den form av regression som används när man anpassar en rät linje till kända datapunkter. Detta kan antingen göras för hand, med hjälp av en linjal och ögonmått, eller med hjälp av räknare. Räknaren använder matematiska metoder som den s.k. minsta kvadratmetoden. Nedan har linjär regression använts för att anpassa en rät linje till ett antal datapunkter.
Har man inte möjlighet att använda en räknare för att anpassa en rät linje får man göra så gott man kan med ögonmått. Det enklaste sättet är att använda en linjal och testa sig fram tills man hittar en linje som passar så bra som möjligt med så många punkter som möjligt. I det här fallet kan en sådan linje exempelvis se ut på följande sätt.
Linjen skär y-axeln vid 1, vilket innebär att m-värdet för den räta linjen är 1. Vi ser också att linjen stiger med ett steg i y-led för varje två steg i x-led, vilket ger riktningskoefficientenIcke-linjär regression innebär att man anpassar en funktion som inte är linjär. Det kan t.ex. röra sig om andragradsfunktioner eller exponentialfunktioner. Till skillnad från linjär regression kan detta vara svårt att göra för hand och för det mesta används den s.k. minsta kvadratmetoden. Nedan har en andragradskurva anpassats till mätpunkterna.
När man gör detta visas ett antal kolumner markerade L1, L2, L3 osv.
Med hjälp av piltangenterna kan man markera var i listorna man vill fylla i värden. Punkterna som funktionen ska anpassas till matas in med x-värdena i listan L1 och motsvarande y-värden i L2. Skriv in värdena med sifferknapparna följt av ENTER.
Bland annat finns
Genom att pila ned till något alternativ och trycka på ENTER, följt av ENTER igen, utförs den valda regressionen. T.ex. kan man välja linjär regression.