| {{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }} |
| {{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }} |
| {{ 'ml-lesson-time-estimation' | message }} |
En beroende händelse är en händelse vars sannolikhet beror på en eller flera andra händelser. Detta visas enklast med ett exempel. Antag att man har en skål med två kulor: en röd och en lila.
Vilka av följande situationer beskriver beroende händelser?
En kortlek består av 52 kort varav 4 är ess, så sannolikheten att dra ett ess är 524. Drar man ett nytt kort finns det dock bara 51 kort kvar i kortleken, och bara 3 av dessa är ess. Sannolikheten att få ett ess när man drar det andra kortet är då 513. Sannolikheten för att få ess i andra dragningen påverkas alltså av resultatet från den första, vilket innebär att händelserna måste vara beroende.
När man gör flera olika slumpförsök, eller när ett upprepas, får man en kombination av händelser. Sannolikheten för att både händelse A och B, från olika slumpförsök, inträffar får man genom att multiplicera deras individuella sannolikheter.
Att singla slant två gånger kan ses som ett enda kombinerat slumpförsök där det finns fyra möjliga utfall:
Givet detta kan man beräkna sannolikheten att få t.ex. krona i båda kasten.
Om man drar två kort ur en kortlek, vad är sannolikheten att båda är spader?
Multiplicera bråk
Förkorta med 13
Förkorta med 4
Sannolikheten för att slumpmässigt dra två spader ur en kortlek är alltså 513.