{{ 'ml-label-loading-course' | message }}
{{ toc.name }}
{{ toc.signature }}
{{ tocHeader }} {{ 'ml-btn-view-details' | message }}
{{ tocSubheader }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
Lektion
Övningar
Rekommenderade
Tester
Ett fel uppstod, försök igen senare!
Kapitel {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
Visa mindre Visa mer expand_more
{{ ability.description }} {{ ability.displayTitle }}
Inställningar & verktyg för lektion
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }}
{{ 'ml-lesson-time-estimation' | message }}
Mathleaks Videolektion

Mathleaks

play_circle_filled
play_circle_filled
Mathleaks
picture_in_picture_alt

Minispelare aktiv

Begrepp

Funktioner som modeller

För att beskriva verkliga fenomen (t.ex. hur en kropp svalnar och planeternas hastighet kring solen) kan man använda funktioner:

  • Linjära funktioner har konstant lutning och är bra att använda om något ökar eller minskar lika mycket hela tiden.
  • Exponentialfunktioner förändras med samma faktor hela tiden och är passande om något ökar eller minskar med lika många procent hela tiden.
  • Potensfunktioner ser väldigt olika ut beroende på vilket gradtal de har, men andragradsfunktioner kan bl.a. användas för att beskriva fritt fall och s.k. svartkroppsstrålning beskrivs av en fjärdegradsfunktion.
Med modellerna kan man göra uppskattningar om vad som kommer att hända efter en viss tid eller sträcka.

Exempel

Vilken funktion beskriver situationen bäst?

fullscreen
Du har 10 000 kr på ett sparkonto med 2 % årsränta. Vilken funktion beskriver bäst hur mycket pengar det finns efter år?
Visa Lösning expand_more
Efter ett år får du räntan kr. Är det lämpligt att t.ex. använda en linjär modell där det fasta beloppet 200 kr läggs till varje år, dvs.
Nej, detta stämmer dåligt överens med verkligheten, eftersom ränta betalas ut procentuellt utifrån hur mycket pengar som finns på kontot. Beloppet ökar inte med lika många kronor varje år, utan med lika många procent. Det betyder att en exponentialfunktion är en bättre beskrivning av den här situationen:
Detta är en förenklad modell med vissa begränsningar. Den kommer alltså inte nödvändigtvis att stämma helt överens med verkligheten. Man kanske tar ut eller sätter in pengar, eller kanske banken ändrar räntan.
Begrepp

Tolka grafer

Grafer används ofta för att beskriva verkliga situationer. Grafen nedan verkar beskriva något förlopp, men det är svårt att avgöra vad.

För att kunna tolka grafen behöver man kunna besvara följande frågor:

  • Vad representerar - och -axeln?
  • Vilka enheter står på axlarna?
  • För vilka intervall är grafen ritad?
Om -axeln anger tid i veckor och -axeln anger tusental, skulle grafen kunna beskriva antal exemplar en nystartad tidning säljer över tid.

Exempel

Tolka grafen

fullscreen

Grafen beskriver en bilresa. Beskriv hur bilen rörde sig under färden.

Visa Lösning expand_more
Vi kan börja med att ta reda på hur fort föraren körde. Detta kan vi ta reda på genom två olika sätt. Vi ser att efter en timme, dvs. då har bilen färdats 50 km. Efter ytterligare en timme har den kommit 50 km till, dvs. 100 km. Bilens hastighet var alltså
Ett annat sätt är att vi väljer origo och en till punkt på grafen, t.ex.
Grafens -värde blir alltså
Vi kan dra slutsatsen att i en sträcka-tid-graf (-graf) motsvarar lutningen bilens fart. Man kan komma ihåg det genom att titta på enheterna på axlarna. För att ta fram utförde vi divisionen
Eftersom lutningen är samma genom hela grafen så bilen höll konstant fart genom hela färden. Bilen färdades alltså med konstant fart i 50 km/h... i 7 timmar.
Laddar innehåll