{{ 'ml-label-loading-course' | message }}
{{ toc.name }}
{{ toc.signature }}
{{ tocHeader }} {{ 'ml-btn-view-details' | message }}
{{ tocSubheader }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
Lektion
Övningar
Rekommenderade
Tester
Ett fel uppstod, försök igen senare!
Kapitel {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
Visa mindre Visa mer expand_more
{{ ability.description }} {{ ability.displayTitle }}
Inställningar & verktyg för lektion
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }}
{{ 'ml-lesson-time-estimation' | message }}
Mathleaks Videolektion

Mathleaks

play_circle_filled
play_circle_filled
Mathleaks
picture_in_picture_alt

Minispelare aktiv

Begrepp

Vinkel

En vinkel mäter en vridning och har ofta enheten grader. Vinkeln innebär ingen vridning alls och motsvarar ett helt varv. Ibland mäter man även vinklar i radianer. Man kan även använda negativa vinklar, vilket är en vridning medurs. Ofta bryr man sig inte om den här riktningen, och då är alla vinklar positiva.

Spetsig vinkel och annan vinkel
Vinklar kan ges namn som trubbig eller spetsig baserat på hur stora de är, men de kan även ges namn baserat på hur de förhåller sig till varandra. Exempel på den sortens vinklar är sidovinklar, vertikalvinklar, likbelägna vinklar och alternatvinklar.
Begrepp

Bisektris

En bisektris är en stråle som delar en vinkel i två lika stora delvinklar.

Bisektris
Begrepp

Sidovinklar

Sidovinklar är två närliggande vinklar som tillsammans bildar en rak vinkel. I figuren är och sidovinklar.


En rak vinkel är , så om man adderar sidovinklar blir summan alltid .

Begrepp

Vertikalvinklar

Vinklar som bildas på motsatt sida om skärningspunkten mellan två linjer kallas vertikalvinklar. I figuren är de blå vinklarna vertikalvinklar, men även de gröna. Vertikalvinklar är alltid lika stora oavsett hur linjerna skär varandra.

Begrepp

Likbelägna vinklar

Likbelägna vinklar är ett par av vinklar som bildas av en transversal när den skär två andra linjer. Vinklarna kallas likbelägna eftersom de bildas på "samma ställe" i förhållande till skärningspunkterna. Likbelägna vinklar är lika stora om linjerna och är parallella.

Exempel

Hur stora är de olika vinklarna?

fullscreen

Linjerna och är parallella. Bestäm storleken på vinklarna och med hjälp av de kända vinklarna i figuren.

Fyra räta linjer med kända och okända vinklar markerade vid skärningspunkterna
Visa Lösning expand_more

Vinkel
Eftersom vinkel befinner sig på motsatt sida om skärningspunkten mellan två linjer är den vertikalvinkel till vinkeln som är

Två räta linjer med kända och okända vinklar markerade vid skärningspunkten

Vertikalvinklar är alltid lika stora, så

Vinkel
Vinkel är sidovinkel till dels vinkeln som är och dels till vinkel som också är . Summan av sidovinklar är alltid så därför är
Vinkel
Vinkelparet och bildas båda av den vänstra linjen som skär och De är därför likbelägna vinklar, och eftersom och är parallella är dessa lika stora. Då måste
Fyra räta linjer med likbelägna vinklar markerade vid skärningspunkterna

Vinkel
Slutligen ser vi att vinkel och också bildas av en linje som skär linjerna och men dessa står på varsin sida om skärningslinjen. Därför är de alternatvinklar vid parallella linjer och därför lika stora. Vinkel är då

Fyra räta linjer med kända vinklar markerade vid skärningspunkterna
Sammanfattningsvis är alltså
Laddar innehåll